Body Chemistry Gastrointestinal Functions 1 Roles and Effects

NOTE: Alphabetic listing.

This general information has been gathered from multiple sources using the GROK Al generator which may not be correct.

If you have any concerns please see a doctor.

Colon Absorption

Physiological Role: Colon absorption involves the uptake of water, electrolytes, and short-chain fatty acids (SCFAs) produced by gut bacteria, maintaining fluid balance and supporting colonocyte energy needs.

Organ Interactions:

- Colon: Absorbs water and electrolytes, forming stool; SCFAs nourish colonocytes.
- Kidneys: Regulates fluid and electrolyte balance in coordination with colon absorption.
- Blood: Maintains plasma electrolyte levels and hydration status.
- Liver: Processes SCFAs absorbed from the colon for energy metabolism.
- Immune System: SCFAs modulate gut immune responses, reducing inflammation.

Clinical Implications:

- High Colon Absorption (Severe to Mild):
- Severe: Excessive water absorption (e.g., in slow-transit constipation), causing hard stools, bowel obstruction (colon), and dehydration (kidneys, blood).
- Moderate: Overactive absorption, leading to constipation and mild dehydration (colon, kidneys).
- Mild: Slightly increased absorption, causing firmer stools and minor discomfort (colon).
- Low Colon Absorption (Severe to Mild):
- Severe: Impaired absorption (e.g., in severe diarrhea or IBD), causing severe dehydration (kidneys, blood), electrolyte imbalances, and malnutrition (liver).
- Moderate: Reduced absorption, leading to loose stools and mild dehydration (colon, kidneys).
- Mild: Slightly reduced absorption, causing softer stools and minor fluid loss (colon, blood).

Colon Peristalsis Function

Physiological Role: Colon peristalsis involves coordinated muscle contractions to move stool toward the rectum, regulating bowel movements.

Organ Interactions:

- Colon: Propels fecal matter for elimination, maintaining gut motility.
- Nervous System: Enteric and autonomic nervous systems regulate peristaltic contractions.
- Rectum: Receives stool for storage and elimination.
- Immune System: Normal peristalsis prevents bacterial overgrowth, supporting gut immunity.
- Muscles (Abdominal): Assist in defecation through coordinated pressure.

Clinical Implications:

- High Colon Peristalsis (Severe to Mild):
- Severe: Hypermotility (e.g., in IBS-D or infections), causing severe diarrhea, dehydration (kidneys), and nutrient loss (colon).
- Moderate: Increased motility, leading to frequent loose stools and mild cramping (colon, rectum).
- Mild: Slightly increased motility, causing more frequent bowel movements and minor discomfort (colon).
- Low Colon Peristalsis (Severe to Mild):
- Severe: Hypomotility (e.g., in Hirschsprung's disease), causing severe constipation, bowel obstruction (colon), and bacterial overgrowth (immune system).
 - Moderate: Slowed motility, leading to constipation and bloating (colon, rectum).
- Mild: Slightly reduced motility, causing infrequent stools and mild discomfort (colon).

Cortisol Dysfunction

Physiological Role: Cortisol, a glucocorticoid hormone, regulates metabolism, stress response, and inflammation; in the gut, it influences mucosal integrity and immune responses.

Organ Interactions:

- Adrenal Glands: Produce cortisol, impacting systemic metabolism.
- Intestines: Modulates gut barrier function and immune responses.
- Immune System: Suppresses inflammation but can impair gut immunity if dysregulated.
- Liver: Metabolizes cortisol, affecting its systemic levels.
- Brain: Regulates stress response, influencing gut-brain axis and motility.

Clinical Implications:

- High Cortisol (Severe to Mild):
- Severe: Cushing's syndrome, causing gut barrier damage, increased infection risk (intestines, immune system), and metabolic dysfunction (liver).
- Moderate: Chronic stress, leading to mild gut inflammation, IBS-like symptoms (intestines), and anxiety (brain).
- Mild: Slightly elevated cortisol, causing subtle gut motility changes or mild stress-related symptoms (intestines, brain).
- Low Cortisol (Severe to Mild):
- Severe: Addison's disease, causing severe fatigue, electrolyte imbalances (kidneys), and gut dysfunction (intestines).
- Moderate: Adrenal insufficiency, leading to mild digestive issues and weakened immunity (intestines, immune system).
- Mild: Slightly low cortisol, causing subtle fatigue and minor gut motility issues (intestines).

Cytokine Activity

Physiological Role: Cytokines are signaling molecules that mediate inflammation and immune responses in the gut, regulating mucosal immunity and tissue repair.

Organ Interactions:

- Immune System: Coordinate inflammatory and immune responses in the gut.
- Intestines: Modulate mucosal inflammation and barrier function.
- Blood: Circulate to amplify systemic inflammation.
- Liver: Stimulate acute-phase protein production (e.g., CRP) during inflammation.
- Brain: Influence gut-brain axis, affecting mood and motility.

Clinical Implications:

- High Cytokine Activity (Severe to Mild):
- Severe: Cytokine storm (e.g., in sepsis or IBD), causing severe gut inflammation, tissue damage (intestines), and systemic illness (blood, liver).
- Moderate: Chronic inflammation (e.g., Crohn's disease), leading to gut pain, diarrhea (intestines), and fatigue (brain).
- Mild: Slightly elevated cytokines, causing mild gut irritation or discomfort (intestines).
- Low Cytokine Activity (Severe to Mild):
- Severe: Immunosuppression, increasing infection risk and impairing gut repair (intestines, immune system).
- Moderate: Reduced immune response, leading to mild infection susceptibility (immune system, intestines).
- Mild: Slightly low activity, potentially causing subtle delays in gut healing (intestines).

Fibrinogen

Physiological Role: Fibrinogen, a plasma protein, supports blood clotting and inflammation, aiding gut tissue repair and immune responses.

Organ Interactions:

- Liver: Synthesized as an acute-phase reactant during inflammation.
- Blood: Forms fibrin clots to repair gut mucosal damage.
- Intestines: Supports tissue repair in mucosal injuries.
- Immune System: Enhances inflammation and pathogen clearance in the gut.
- Blood Vessels: Contributes to clotting in gastrointestinal bleeding.

Clinical Implications:

- High Fibrinogen (Severe to Mild):
- Severe: Chronic inflammation or clotting disorders, increasing thrombosis risk (blood vessels) and gut inflammation (intestines).
- Moderate: Acute inflammation (e.g., IBD), leading to mild clotting risk and gut tissue stress (intestines, blood).
- Mild: Slightly elevated, causing minor inflammation or clotting tendency (intestines, blood vessels).
- Low Fibrinogen (Severe to Mild):
- Severe: Liver failure or DIC, causing severe bleeding risk (blood vessels) and impaired gut repair (intestines).
- Moderate: Liver dysfunction, leading to mild bleeding tendency and delayed gut healing (intestines, blood).
 - Mild: Slightly low, potentially causing subtle bleeding or healing delays (intestines).

Gastric Absorption

Physiological Role: Gastric absorption involves the uptake of small amounts of water, alcohol, and certain drugs in the stomach, aiding systemic delivery.

Organ Interactions:

- Stomach: Absorbs limited substances, protecting mucosa from damage.
- Blood: Transports absorbed substances (e.g., alcohol) to systemic circulation.
- Liver: Metabolizes absorbed substances, detoxifying drugs or alcohol.
- Kidneys: Excrete absorbed substances or their metabolites.
- Nervous System: Absorbed alcohol affects brain function, altering motility.

Clinical Implications:

- High Gastric Absorption (Severe to Mild):
- Severe: Rapid absorption (e.g., alcohol in empty stomach), causing toxicity, liver damage (liver), and neurological effects (brain).
- Moderate: Increased absorption, leading to mild intoxication or drug side effects (blood, brain).
 - Mild: Slightly increased absorption, causing minor systemic effects (blood, liver).
- Low Gastric Absorption (Severe to Mild):
- Severe: Gastric damage (e.g., gastritis), impairing drug/alcohol uptake, reducing efficacy (blood, liver).
 - Moderate: Reduced absorption, leading to mild delays in drug action (blood, liver).
- Mild: Slightly reduced absorption, causing subtle delays in systemic effects (blood).

Gastric Peristalsis

Physiological Role: Gastric peristalsis involves stomach muscle contractions to mix and propel food into the small intestine, aiding digestion.

Organ Interactions:

- Stomach: Mixes food with gastric juices and moves chyme to the duodenum.
- Nervous System: Enteric and autonomic systems regulate gastric motility.
- Small Intestine: Receives chyme for further digestion and absorption.
- Pancreas: Stimulated by chyme movement to release digestive enzymes.
- Immune System: Normal peristalsis prevents bacterial overgrowth in the stomach.

Clinical Implications:

- High Gastric Peristalsis (Severe to Mild):
- Severe: Hypermotility (e.g., in dumping syndrome), causing rapid gastric emptying, diarrhea (small intestine), and nutrient loss (blood).
- Moderate: Increased motility, leading to rapid digestion, mild diarrhea, or cramping (stomach, small intestine).
 - Mild: Slightly increased motility, causing minor digestive discomfort (stomach).
- Low Gastric Peristalsis (Severe to Mild):
- Severe: Gastroparesis, causing severe nausea, vomiting, and bacterial overgrowth (stomach, immune system).
- Moderate: Slowed motility, leading to bloating and delayed digestion (stomach, small intestine).
 - Mild: Slightly reduced motility, causing mild bloating or fullness (stomach).

Histamine

Physiological Role: Histamine, a signaling molecule, regulates gastric acid secretion, immune responses, and gut motility in the gastrointestinal system.

Organ Interactions:

- Stomach: Stimulates hydrochloric acid secretion for digestion.
- Immune System: Mediates allergic and inflammatory responses in the gut.
- Intestines: Influences motility and mucosal inflammation.
- Blood Vessels: Causes vasodilation and permeability in gut allergic reactions.
- Nervous System: Affects gut-brain axis, altering motility and sensation.

Clinical Implications:

- High Histamine (Severe to Mild):
- Severe: Allergic reactions or mast cell disorders, causing severe gastric hypersecretion, ulcers (stomach), and diarrhea (intestines).
- Moderate: Histamine intolerance, leading to abdominal pain, bloating, and mild allergic symptoms (intestines, immune system).
- Mild: Slightly elevated, causing minor gastric irritation or motility changes (stomach, intestines).
- Low Histamine (Severe to Mild):
- Severe: Rare, impairing gastric acid secretion, digestion (stomach), and immune responses (immune system).
- Moderate: Reduced histamine, causing mild digestive delays and weakened gut immunity (stomach, immune system).
- Mild: Slightly low, potentially causing subtle digestive or immune issues (stomach, immune system).

Homocysteine

Physiological Role: Homocysteine, an amino acid, is an intermediate in methionine metabolism, influencing vascular and gut health when imbalanced.

Organ Interactions:

- Blood Vessels: High levels damage endothelium, increasing gut vascular risk.
- Liver: Metabolizes homocysteine via methylation pathways.
- Intestines: High levels may contribute to mucosal inflammation.
- Heart: Elevates cardiovascular risk, affecting gut blood supply.
- Kidneys: Excrete homocysteine metabolites; impaired function raises levels.

Clinical Implications:

- High Homocysteine (Severe to Mild):
- Severe: Hyperhomocysteinemia, causing vascular damage (blood vessels), gut ischemia (intestines), and liver stress (liver).
- Moderate: Elevated from B-vitamin deficiency, leading to mild vascular inflammation and gut dysfunction (intestines, blood vessels).
- Mild: Slightly elevated, causing subtle vascular or inflammatory changes (blood vessels, intestines).
- Low Homocysteine (Severe to Mild):
- Severe: Rare, potentially impairing methylation, affecting gut repair (intestines) and liver function (liver).
- Moderate: Low levels, usually beneficial, reducing vascular risk (blood vessels); may cause mild metabolic issues (liver).
- Mild: Slightly low, typically asymptomatic, supporting vascular health (blood vessels).

Hs-CRP (High-Sensitivity C-Reactive Protein)

Physiological Role: Hs-CRP, an acute-phase protein, indicates systemic and gut inflammation, produced in response to cytokines.

Organ Interactions:

- Liver: Synthesized during inflammation, reflecting gut or systemic stress.
- Intestines: Elevated in gut inflammation (e.g., IBD), indicating mucosal damage.
- Immune System: Marks inflammatory activity, amplifying immune responses.
- Blood Vessels: High levels contribute to endothelial dysfunction in gut vasculature.
- Heart: Elevates cardiovascular risk, affecting gut blood supply.

Clinical Implications:

- High Hs-CRP (Severe to Mild):
- Severe: Severe inflammation (e.g., Crohn's disease), causing gut tissue damage (intestines), vascular dysfunction (blood vessels), and liver stress (liver).
- Moderate: Chronic gut inflammation, leading to abdominal pain and mild vascular risk (intestines, blood vessels).
- Mild: Slightly elevated, causing minor gut irritation or systemic inflammation (intestines, immune system).
- Low Hs-CRP: Normal, indicating minimal inflammation; no adverse effects, supporting gut and vascular health (intestines, blood vessels).

Hydrochloric Acid (HCL) Production

Physiological Role: HCL, secreted by gastric parietal cells, aids protein digestion, activates pepsin, and kills ingested pathogens.

Organ Interactions:

- Stomach: Facilitates digestion and protects against pathogens.
- Small Intestine: Neutralized by bicarbonate, enabling nutrient absorption.
- Immune System: Prevents bacterial overgrowth in the stomach.
- Pancreas: Stimulates bicarbonate and enzyme release for digestion.
- Esophagus: Reflux of HCL causes irritation and damage.

Clinical Implications:

- High HCL Production (Severe to Mild):
- Severe: Zollinger-Ellison syndrome, causing ulcers, reflux (stomach, esophagus), and diarrhea (small intestine).
- Moderate: Hypersecretion, leading to mild ulcers, heartburn (stomach, esophagus), and digestive discomfort (small intestine).
- Mild: Slightly increased, causing minor heartburn or gastric irritation (stomach, esophagus).
- Low HCL Production (Severe to Mild):
- Severe: Achlorhydria, impairing digestion, increasing infection risk (stomach, immune system), and causing malabsorption (small intestine).
- Moderate: Hypochlorhydria, leading to mild digestive issues and bacterial overgrowth (stomach, immune system).
- Mild: Slightly reduced, causing subtle digestive delays or bloating (stomach).

Intestinal Bacteria

Physiological Role: Intestinal bacteria (gut microbiota) ferment dietary fiber, produce SCFAs, synthesize vitamins, and regulate gut immunity.

Organ Interactions:

- Intestines: Maintain gut barrier, produce SCFAs, and regulate motility.
- Immune System: Modulate mucosal immunity, preventing pathogenic overgrowth.
- Liver: Process SCFAs and microbial metabolites for energy and detoxification.
- Brain: Influence gut-brain axis, affecting mood and motility.
- Blood: Microbial metabolites influence systemic inflammation.

Clinical Implications:

- High Intestinal Bacteria (Severe to Mild):
- Severe: Dysbiosis or SIBO, causing severe bloating, diarrhea (intestines), and systemic inflammation (immune system, blood).
- Moderate: Bacterial overgrowth, leading to abdominal pain and mild malabsorption (intestines).
 - Mild: Slight dysbiosis, causing minor bloating or digestive discomfort (intestines).
- Low Intestinal Bacteria (Severe to Mild):
- Severe: Antibiotic overuse, impairing gut barrier, immunity (intestines, immune system), and SCFA production (liver).
- Moderate: Reduced diversity, leading to mild digestive issues and weakened immunity (intestines, immune system).
- Mild: Slightly reduced, causing subtle digestive or immune changes (intestines, immune system).

Intraluminal Pressure

Physiological Role: Intraluminal pressure, generated by gut motility and gas, facilitates digestion and stool propulsion in the gastrointestinal tract.

Organ Interactions:

- Intestines: Drives peristalsis, aiding digestion and stool movement.
- Stomach: Influences gastric emptying and digestion.
- Nervous System: Enteric system regulates pressure via motility.
- Rectum: High pressure triggers defecation reflex.
- Immune System: Excessive pressure may cause mucosal stress, promoting inflammation.

Clinical Implications:

- High Intraluminal Pressure (Severe to Mild):
- Severe: Bowel obstruction or IBS, causing severe pain, distension (intestines), and risk of perforation (rectum).
- Moderate: Increased pressure, leading to cramping, bloating, and constipation (intestines, rectum).
- Mild: Slightly elevated, causing minor abdominal discomfort or irregular bowel movements (intestines).
- Low Intraluminal Pressure (Severe to Mild):
- Severe: Paralytic ileus, causing severe motility failure, nausea (intestines), and bacterial overgrowth (immune system).
 - Moderate: Reduced motility, leading to mild constipation or bloating (intestines).
- Mild: Slightly reduced, causing subtle delays in digestion or bowel movements (intestines).

Lp-PLA2 (Lipoprotein-Associated Phospholipase A2)

Physiological Role: Lp-PLA2, an enzyme in blood, produces pro-inflammatory mediators, contributing to gut vascular inflammation and atherosclerosis.

Organ Interactions:

- Blood Vessels: Promotes endothelial dysfunction in gut vasculature.
- Intestines: Contributes to mucosal inflammation in chronic gut diseases.
- Heart: Increases cardiovascular risk, affecting gut blood supply.
- Immune System: Amplifies inflammation, worsening gut immune responses.
- Liver: Synthesized and influenced by systemic inflammation.

Clinical Implications:

- High Lp-PLA2 (Severe to Mild):
- Severe: High vascular inflammation, causing gut ischemia (intestines), atherosclerosis (heart), and endothelial damage (blood vessels).
- Moderate: Elevated in chronic gut inflammation, increasing cardiovascular risk and mild mucosal stress (intestines, heart).
- Mild: Slightly elevated, causing subtle vascular or gut inflammation (blood vessels, intestines).
- Low Lp-PLA2: Normal, reducing vascular and gut inflammation (blood vessels, intestines); no adverse effects.

Myeloperoxidase

Physiological Role: Myeloperoxidase, an enzyme released by neutrophils, generates reactive oxygen species to fight pathogens but contributes to gut inflammation.

Organ Interactions:

- Immune System: Enhances antimicrobial activity but promotes gut inflammation.
- Intestines: Contributes to mucosal damage in inflammatory conditions.
- Blood Vessels: Causes oxidative stress, damaging gut vasculature.
- Heart: Increases cardiovascular risk via oxidative damage.
- Liver: Elevated in systemic inflammation, affecting gut-liver axis.

Clinical Implications:

- High Myeloperoxidase (Severe to Mild):
- Severe: Severe gut inflammation (e.g., IBD), causing mucosal damage (intestines), vascular stress (blood vessels), and cardiovascular risk (heart).
- Moderate: Chronic inflammation, leading to mild gut tissue damage and vascular risk (intestines, blood vessels).
- Mild: Slightly elevated, causing minor gut inflammation or oxidative stress (intestines, blood vessels).
- Low Myeloperoxidase: Normal, reducing gut and vascular inflammation (intestines, blood vessels); no adverse effects.

nf-Kappa B

Physiological Role: nf-Kappa B is a transcription factor regulating inflammation, immunity, and cell survival in the gut, activated by stress or pathogens.

Organ Interactions:

- Immune System: Drives cytokine production, amplifying gut immune responses.
- Intestines: Regulates mucosal inflammation and barrier function.
- Liver: Influences acute-phase protein production during gut inflammation.
- Blood Vessels: Contributes to endothelial inflammation in gut vasculature.
- Brain: Affects gut-brain axis, influencing motility and stress responses.

Clinical Implications:

- High nf-Kappa B (Severe to Mild):
- Severe: Severe gut inflammation (e.g., IBD), causing mucosal damage (intestines), systemic inflammation (immune system), and liver stress (liver).
- Moderate: Chronic inflammation, leading to mild gut pain, diarrhea (intestines), and systemic effects (blood).
 - Mild: Slightly elevated, causing minor gut irritation or inflammation (intestines).
- Low nf-Kappa B (Severe to Mild):
- Severe: Immunosuppression, impairing gut immunity and repair (intestines, immune system).
- Moderate: Reduced activity, leading to mild infection susceptibility (immune system, intestines).
 - Mild: Slightly low, potentially causing subtle delays in gut healing (intestines).

Pepsin Secretion

Physiological Role: Pepsin, a digestive enzyme in the stomach, breaks down proteins into peptides, activated by hydrochloric acid.

Organ Interactions:

- Stomach: Digests proteins and supports gastric function.
- Small Intestine: Peptides from pepsin digestion are further absorbed.
- Pancreas: Stimulates enzyme release for downstream digestion.
- Immune System: Prevents bacterial overgrowth by aiding acidic environment.
- Esophagus: Reflux of pepsin causes irritation and damage.

Clinical Implications:

- High Pepsin Secretion (Severe to Mild):
- Severe: Hypersecretion (e.g., Zollinger-Ellison syndrome), causing ulcers (stomach), reflux damage (esophagus), and diarrhea (small intestine).
- Moderate: Increased secretion, leading to mild ulcers or heartburn (stomach, esophagus).
- Mild: Slightly elevated, causing minor gastric irritation or reflux (stomach, esophagus).
- Low Pepsin Secretion (Severe to Mild):
- Severe: Achlorhydria or gastric atrophy, impairing protein digestion (stomach), causing malabsorption (small intestine) and infection risk (immune system).
- Moderate: Reduced secretion, leading to mild digestive issues and bloating (stomach).
 - Mild: Slightly reduced, causing subtle digestive delays or discomfort (stomach).

Sedimentation Rate (ESR)

Physiological Role: ESR measures the rate at which red blood cells settle, reflecting systemic and gut inflammation.

Organ Interactions:

- Blood: Indicates inflammation via red blood cell aggregation.
- Intestines: Elevated in gut inflammatory conditions (e.g., IBD).
- Liver: Influences acute-phase protein production (e.g., fibrinogen).
- Immune System: Marks inflammatory activity, amplifying gut responses.
- Heart: High ESR may indicate cardiovascular risk via inflammation.

Clinical Implications:

- High Sedimentation Rate (Severe to Mild):
- Severe: Severe inflammation (e.g., IBD), causing gut tissue damage (intestines), systemic effects (blood), and liver stress (liver).
- Moderate: Chronic gut inflammation, leading to abdominal pain and mild systemic effects (intestines, blood).
 - Mild: Slightly elevated, causing minor gut irritation or inflammation (intestines).
- Low Sedimentation Rate: Normal, indicating minimal inflammation; no adverse effects, supporting gut and systemic health (intestines, blood).

Small Intestine Nutrient Absorption

Physiological Role: Small intestine nutrient absorption involves uptake of carbohydrates, proteins, fats, vitamins, and minerals, supporting systemic nutrition.

Organ Interactions:

- Small Intestine: Primary site of nutrient absorption via villi and microvilli.
- Blood: Transports absorbed nutrients to systemic circulation.
- Liver: Processes absorbed nutrients for metabolism or storage.
- Pancreas: Secretes enzymes to facilitate nutrient breakdown.
- Immune System: Gut-associated lymphoid tissue regulates nutrient-related immunity.

Clinical Implications:

- High Small Intestine Nutrient Absorption (Severe to Mild):
- Severe: Rare, potentially causing nutrient overload, liver stress (liver), or metabolic imbalance (blood).
- Moderate: Overactive absorption, leading to mild metabolic stress or weight gain (liver, blood).
- Mild: Slightly increased, usually asymptomatic but may cause minor nutrient imbalances (blood).
- Low Small Intestine Nutrient Absorption (Severe to Mild):
- Severe: Malabsorption (e.g., celiac disease), causing severe malnutrition, weight loss (blood, liver), and immune weakness (immune system).
- Moderate: Reduced absorption, leading to mild nutrient deficiencies and fatigue (blood, liver).
- Mild: Slightly reduced, causing subtle nutrient shortages or digestive discomfort (small intestine).

Small Intestine Peristalsis

Physiological Role: Small intestine peristalsis involves muscle contractions to propel chyme, facilitating digestion and nutrient absorption.

Organ Interactions:

- Small Intestine: Moves chyme for digestion and absorption.
- Nervous System: Enteric and autonomic systems regulate motility.
- Pancreas: Stimulates enzyme release for digestion.
- Colon: Delivers chyme for further processing.
- Immune System: Prevents bacterial overgrowth via normal motility.

Clinical Implications:

- High Small Intestine Peristalsis (Severe to Mild):
- Severe: Hypermotility (e.g., IBS-D), causing severe diarrhea, nutrient loss (small intestine), and dehydration (blood).
- Moderate: Increased motility, leading to loose stools and mild cramping (small intestine, colon).
- Mild: Slightly increased, causing minor digestive discomfort or frequent stools (small intestine).
- Low Small Intestine Peristalsis (Severe to Mild):
- Severe: Paralytic ileus, causing severe bloating, nausea (small intestine), and bacterial overgrowth (immune system).
- Moderate: Reduced motility, leading to mild bloating and malabsorption (small intestine).
- Mild: Slightly reduced, causing subtle digestive delays or discomfort (small intestine).