BACTERIA in Alphabetical order complements of GROK AI.

The brief summaries have been provided by GROK AI and may not be accurate. Please double check with other sources as required.

Babesia genus(1-15)

Physiological Role: Babesia species are protozoan parasites (not bacteria, but listed as such), transmitted by ticks, infecting red blood cells and causing babesiosis; they have no beneficial role in human body chemistry.

Organ Interactions:

- Blood: Infects erythrocytes, causing hemolysis and altering oxygen transport chemistry.
- Spleen: Overburdens splenic clearance, affecting iron recycling and immune modulation.
- Liver: Induces inflammation, impairing bilirubin metabolism and detoxification.
- Kidneys: Leads to hemoglobinuria, disrupting electrolyte balance and filtration.
- Immune System: Triggers cytokine release, overwhelming hemolytic pathways.

Clinical Implications:

- High Babesia genus(1-15) (Severe to Mild):
- Severe: Massive hemolysis, causing acute renal failure (kidneys), severe anemia (blood), and multiorgan dysfunction (liver, spleen).
- Moderate: Ongoing infection, leading to fatigue, jaundice (liver), and mild hemolytic anemia (blood).
- Mild: Subclinical parasitemia, causing subtle fatigue or mild inflammation (immune system).
- Low/Absent Babesia genus(1-15): Normal, as it is not part of the human microbiome and is cleared by immune responses.

Bacillus anthracis

Physiological Role: Bacillus anthracis is a gram-positive spore-forming bacterium causing anthrax, producing toxins that disrupt cell signaling and immune chemistry; no beneficial role.

Organ Interactions:

Blood: Toxins cause edema and hemorrhage, altering coagulation chemistry.

- Lungs: Inhalation form leads to hemorrhagic mediastinitis, impairing gas exchange.
- Skin: Cutaneous form causes local necrosis, affecting tissue pH and inflammation.
- Immune System: Suppresses phagocytosis, overwhelming cytokine balance.
- Liver: Toxins impair detoxification, leading to systemic toxemia.

- High Bacillus anthracis (Severe to Mild):
- Severe: Systemic toxemia, causing septic shock (blood), respiratory failure (lungs), and multiorgan failure (liver).
- Moderate: Localized infection, leading to edema and inflammation (skin, immune system).
 - Mild: Early exposure, causing mild fever or local irritation (immune system).
- Low/Absent Bacillus anthracis: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Bartonella genus (1-39)

Physiological Role: Bartonella species are gram-negative bacteria causing bartonellosis, affecting endothelial cells and altering vascular chemistry; no beneficial role.

Organ Interactions:

- Blood Vessels: Infects endothelium, causing vasculitis and altering nitric oxide balance.
- Immune System: Induces persistent bacteremia, disrupting cytokine profiles.
- Lymph Nodes: Causes lymphadenopathy, affecting immune cell trafficking.
- Heart: Leads to endocarditis, impairing cardiac output and chemistry.
- Liver: Causes granulomatous inflammation, altering metabolic enzymes.

Clinical Implications:

- High Bartonella genus (1-39) (Severe to Mild):
- Severe: Disseminated infection, causing endocarditis (heart), severe vasculitis (blood vessels), and organ failure (liver).
- Moderate: Chronic bacteremia, leading to fatigue, lymphadenopathy (lymph nodes), and mild inflammation (immune system).

- Mild: Subclinical, causing subtle vascular changes or low-grade fever (blood vessels).
- Low/Absent Bartonella genus (1-39): Normal, as it is not part of the human microbiome and is cleared by immune responses.

Bordetella pertussis

Physiological Role: Bordetella pertussis is a gram-negative bacterium causing whooping cough, producing toxins that disrupt respiratory epithelium and immune chemistry; no beneficial role.

Organ Interactions:

- Respiratory System: Toxins paralyze cilia, altering mucus clearance and pH.
- Immune System: Suppresses phagocytosis, overwhelming cytokine responses.
- Lungs: Causes bronchopneumonia, impairing gas exchange chemistry.
- Brain: Toxins may cause encephalopathy, altering neurotransmitter balance.
- Blood: Induces leukocytosis, affecting white cell chemistry.

Clinical Implications:

- High Bordetella pertussis (Severe to Mild):
- Severe: Pertussis pneumonia, causing respiratory failure (lungs), encephalopathy (brain), and severe inflammation (immune system).
- Moderate: Paroxysmal cough, leading to hypoxia and mild leukocytosis (lungs, blood).
- Mild: Early infection, causing mild cough and low-grade fever (respiratory system).
- Low/Absent Bordetella pertussis: Normal, as it is not part of the human microbiome and is cleared by immune responses or vaccination.

Borrelia (other 1-20)

Physiological Role: Other Borrelia species (e.g., relapsing fever Borrelia) are spirochetes causing relapsing fever, evading immune chemistry via antigenic variation; no beneficial role.

Organ Interactions:

- Blood: Causes cyclic bacteremia, altering cytokine and immune profiles.
- Joints: Leads to arthritis, disrupting synovial chemistry.

- Liver: Causes jaundice, impairing bilirubin metabolism.
- Brain: Induces meningitis, affecting cerebrospinal fluid chemistry.
- Immune System: Antigenic variation overwhelms antibody responses.

- High Borrelia (other 1-20) (Severe to Mild):
- Severe: Relapsing fever crisis, causing severe bacteremia (blood), meningitis (brain), and organ failure (liver).
- Moderate: Recurrent fevers, leading to joint pain (joints) and mild jaundice (liver).
- Mild: Subclinical, causing low-grade fever or fatigue (immune system).
- Low/Absent Borrelia (other 1-20): Normal, as it is not part of the human microbiome and is cleared by immune responses.

Borrelia burgdorferi

Physiological Role: Borrelia burgdorferi is a spirochete causing Lyme disease, altering immune chemistry via persistent antigens; no beneficial role.

Organ Interactions:

- Joints: Causes arthritis, disrupting synovial fluid chemistry.
- Heart: Leads to carditis, affecting cardiac conduction.
- Nervous System: Induces neuroborreliosis, altering neurotransmitter balance.
- Immune System: Triggers chronic inflammation via molecular mimicry.
- Skin: Causes erythema migrans, affecting local pH and inflammation.

Clinical Implications:

- High Borrelia burgdorferi (Severe to Mild):
- Severe: Disseminated Lyme, causing neuroborreliosis (nervous system), carditis (heart), and severe arthritis (joints).
- Moderate: Early disseminated disease, leading to joint pain (joints) and fatigue (immune system).
 - Mild: Localized infection, causing rash and mild fever (skin).
- Low/Absent Borrelia burgdorferi: Normal, as it is not part of the human microbiome and is cleared by immune responses or antibiotics.

Brucella

Physiological Role: Brucella species are gram-negative bacteria causing brucellosis, surviving intracellularly and altering macrophage chemistry; no beneficial role.

Organ Interactions:

- Immune System: Infects macrophages, disrupting cytokine production.
- Liver: Causes granulomas, impairing detoxification enzymes.
- Bones: Leads to osteomyelitis, affecting bone matrix chemistry.
- Reproductive System: Causes orchitis, altering hormonal balance.
- Spleen: Induces splenomegaly, affecting immune cell sequestration.

Clinical Implications:

- High Brucella (Severe to Mild):
- Severe: Chronic brucellosis, causing osteomyelitis (bones), liver abscesses (liver), and reproductive dysfunction (reproductive system).
- Moderate: Undulant fever, leading to fatigue and splenomegaly (spleen, immune system).
 - Mild: Early infection, causing mild fever and joint pain (immune system).
- Low/Absent Brucella: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Campylobacter jejuni

Physiological Role: Campylobacter jejuni is a gram-negative bacterium causing gastroenteritis, producing toxins that alter gut epithelial chemistry; no beneficial role.

Organ Interactions:

- Intestines: Invades mucosa, causing inflammation and altering electrolyte balance.
- Immune System: Triggers Guillain-Barré syndrome via molecular mimicry.
- Joints: Causes reactive arthritis, disrupting synovial chemistry.
- Nervous System: Autoantibodies affect nerve conduction.
- Blood: Induces bacteremia in severe cases, altering coagulation.

Clinical Implications:

High Campylobacter jejuni (Severe to Mild):

- Severe: Guillain-Barré syndrome, causing paralysis (nervous system), severe diarrhea (intestines), and reactive arthritis (joints).
- Moderate: Acute gastroenteritis, leading to dehydration and inflammation (intestines, immune system).
 - Mild: Mild diarrhea and abdominal pain (intestines).
- Low/Absent Campylobacter jejuni: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Chlamydophila psittaci

Physiological Role: Chlamydophila psittaci is an obligate intracellular bacterium causing psittacosis, disrupting host cell metabolism; no beneficial role.

Organ Interactions:

- Lungs: Causes pneumonia, altering gas exchange chemistry.
- Liver: Induces hepatitis, impairing enzyme function.
- Heart: Rarely causes myocarditis, affecting cardiac chemistry.
- Brain: Leads to encephalitis, altering neurotransmitter balance.
- Immune System: Evades intracellular killing, overwhelming cytokine responses.

Clinical Implications:

- High Chlamydophila psittaci (Severe to Mild):
- Severe: Severe pneumonia, causing respiratory failure (lungs), encephalitis (brain), and hepatitis (liver).
- Moderate: Atypical pneumonia, leading to fever and fatigue (lungs, immune system).
- Mild: Mild respiratory symptoms (lungs).
- Low/Absent Chlamydophila psittaci: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Clostridium botulinum

Physiological Role: Clostridium botulinum is a spore-forming anaerobe producing botulinum toxin, blocking neurotransmitter release; no beneficial role.

Organ Interactions:

Nervous System: Toxin inhibits acetylcholine, causing paralysis.

- Muscles: Leads to flaccid paralysis, impairing contraction.
- Respiratory System: Causes respiratory failure due to diaphragmatic paralysis.
- Gastrointestinal System: In foodborne form, toxin absorption disrupts gut motility.
- Immune System: Minimal direct interaction; toxin-mediated effects dominate.

- High Clostridium botulinum (Severe to Mild):
- Severe: Botulism, causing respiratory failure (respiratory system), paralysis (nervous system), and death.
- Moderate: Progressive paralysis, leading to muscle weakness (muscles) and swallowing difficulty (gastrointestinal system).
 - Mild: Early symptoms like blurred vision or dry mouth (nervous system).
- Low/Absent Clostridium botulinum: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Clostridium difficile

Physiological Role: Clostridium difficile is a spore-forming anaerobe in the gut microbiome, overgrowing after antibiotic disruption, producing toxins that alter gut epithelial chemistry.

Organ Interactions:

- Intestines: Toxins cause pseudomembranous colitis, disrupting mucosal barrier.
- Immune System: Triggers inflammation via cytokine release.
- Kidneys: Dehydration from diarrhea affects electrolyte balance.
- Liver: Rarely causes hepatic involvement in severe cases.
- Blood: Bacteremia in fulminant cases alters coagulation.

Clinical Implications:

- High Clostridium difficile (Severe to Mild):
- Severe: Fulminant colitis, causing toxic megacolon (intestines), sepsis (blood), and renal failure (kidneys).
- Moderate: Recurrent diarrhea, leading to dehydration and inflammation (intestines, immune system).
 - Mild: Mild colitis, causing loose stools (intestines).

• Low/Absent Clostridium difficile: Normal in balanced microbiome, preventing overgrowth; low levels are harmless.

Clostridium perfringens

Physiological Role: Clostridium perfringens is a gram-positive anaerobe producing toxins causing gas gangrene or food poisoning, altering tissue chemistry; commensal in low amounts.

Organ Interactions:

- Muscles: Toxins cause myonecrosis, disrupting cellular metabolism.
- Intestines: Enterotoxin causes diarrhea, altering fluid balance.
- Blood: Toxins cause hemolysis, affecting oxygen transport.
- Immune System: Triggers inflammation and tissue damage.
- Liver: Rarely causes hepatic abscesses.

Clinical Implications:

- High Clostridium perfringens (Severe to Mild):
- Severe: Gas gangrene, causing tissue necrosis (muscles), sepsis (blood), and multiorgan failure (liver).
- Moderate: Food poisoning, leading to severe diarrhea and dehydration (intestines).
 - Mild: Mild gastrointestinal upset (intestines).
- Low/Absent Clostridium perfringens: Normal as low-level commensal; absence may indicate dysbiosis but is harmless.

Corynebacterium diphtheriae

Physiological Role: Corynebacterium diphtheriae is a gram-positive bacterium producing diphtheria toxin, inhibiting protein synthesis; no beneficial role.

Organ Interactions:

- Throat: Toxin causes pseudomembrane, altering local pH.
- Heart: Toxin causes myocarditis, disrupting cardiac chemistry.
- Nervous System: Leads to neuropathy, affecting nerve conduction.
- Immune System: Toxin suppresses immune cell function.
- Kidneys: Rarely causes renal involvement.

- High Corynebacterium diphtheriae (Severe to Mild):
- Severe: Diphtheria, causing airway obstruction (throat), myocarditis (heart), and neuropathy (nervous system).
- Moderate: Localized infection, leading to sore throat and mild toxin effects (throat, immune system).
- Mild: Asymptomatic carriage (immune system).
- Low/Absent Corynebacterium diphtheriae: Normal, as it is not part of the human microbiome and is cleared by immune responses or vaccination.

E. coli

Physiological Role: E. coli is a gram-negative bacterium in the gut microbiome, aiding vitamin K synthesis and preventing pathogen colonization; pathogenic strains disrupt gut chemistry.

Organ Interactions:

- Intestines: Maintains barrier function; pathogenic strains cause inflammation.
- Immune System: Modulates cytokine balance; toxins trigger responses.
- Kidneys: Pathogenic strains (e.g., EHEC) cause hemolytic uremic syndrome.
- Blood: Toxins cause endotoxemia, altering coagulation.
- Brain: Rarely causes meningitis in newborns.

Clinical Implications:

- High E. coli (Severe to Mild):
- Severe: Pathogenic overgrowth (e.g., EHEC), causing HUS (kidneys), sepsis (blood), and intestinal damage (intestines).
- Moderate: Gastroenteritis, leading to diarrhea and dehydration (intestines).
- Mild: Asymptomatic overgrowth, causing mild bloating (intestines).
- Low/Absent E. coli: Abnormal, indicating dysbiosis, impairing vitamin synthesis (intestines) and increasing pathogen risk (immune system).

Enterococcus faecalis / faecium

Physiological Role: Enterococcus faecalis/faecium are gram-positive cocci in the gut microbiome, aiding fermentation; opportunistic pathogens disrupt gut chemistry.

Organ Interactions:

- Intestines: Contribute to microbiota balance; overgrowth causes inflammation.
- Heart: Cause endocarditis, altering cardiac chemistry.
- Urinary System: Lead to UTIs, affecting electrolyte balance.
- Immune System: Antibiotic resistance causes persistent infections.
- Blood: Bacteremia disrupts coagulation.

- High Enterococcus faecalis / faecium (Severe to Mild):
- Severe: Sepsis or endocarditis, causing multiorgan failure (heart, blood) and intestinal disruption (intestines).
 - Moderate: UTI or overgrowth, leading to inflammation (urinary system, intestines).
 - Mild: Asymptomatic overgrowth, causing mild dysbiosis (intestines).
- Low/Absent Enterococcus faecalis / faecium: May indicate dysbiosis, impairing gut fermentation (intestines) but often harmless.

Francisella tularensis

Physiological Role: Francisella tularensis is a gram-negative bacterium causing tularemia, evading immune chemistry; no beneficial role.

Organ Interactions:

- Lymph Nodes: Causes lymphadenitis, altering immune cell chemistry.
- Lungs: Pneumonic form disrupts gas exchange.
- Liver: Induces granulomas, impairing detoxification.
- Spleen: Causes splenomegaly, affecting immune sequestration.
- Immune System: Intracellular survival overwhelms cytokine responses.

Clinical Implications:

- High Francisella tularensis (Severe to Mild):
- Severe: Septic tularemia, causing multiorgan failure (liver, spleen) and pneumonia (lungs).
- Moderate: Ulceroglandular form, leading to fever and lymphadenopathy (lymph nodes).
 - Mild: Subclinical, causing low-grade fever (immune system).
- Low/Absent Francisella tularensis: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Haemophilus influenzae

Physiological Role: Haemophilus influenzae is a gram-negative bacterium causing respiratory infections, encapsulated strains evade immune chemistry; commensal in nasopharynx.

Organ Interactions:

- Respiratory System: Causes pneumonia, altering mucus chemistry.
- Brain: Leads to meningitis, affecting cerebrospinal fluid.
- Joints: Causes septic arthritis, disrupting synovial chemistry.
- Immune System: Capsule inhibits phagocytosis.
- Blood: Bacteremia alters coagulation.

Clinical Implications:

- High Haemophilus influenzae (Severe to Mild):
- Severe: Meningitis or epiglottitis, causing neurological damage (brain) and respiratory failure (respiratory system).
- Moderate: Pneumonia, leading to inflammation (respiratory system, immune system).
 - Mild: Otitis media, causing mild inflammation (immune system).
- Low/Absent Haemophilus influenzae: Normal as low-level commensal; absence may indicate dysbiosis but is harmless.

Helicobacter pylori

Physiological Role: Helicobacter pylori is a gram-negative bacterium colonizing the stomach, producing urease to neutralize acid; alters gastric chemistry, potentially carcinogenic.

Organ Interactions:

- Stomach: Causes gastritis, altering pH and mucosal integrity.
- Immune System: Triggers chronic inflammation via cytokines.
- Liver: Chronic infection may lead to hepatic involvement.
- Blood Vessels: Associated with atherosclerosis via systemic inflammation.
- Brain: Rarely causes neurological effects via gut-brain axis.

Clinical Implications:

- High Helicobacter pylori (Severe to Mild):
- Severe: Gastric cancer or ulcers, causing bleeding (stomach) and systemic inflammation (immune system).
- Moderate: Chronic gastritis, leading to dyspepsia and nutrient malabsorption (stomach).
 - Mild: Asymptomatic colonization, causing subtle inflammation (immune system).
- Low/Absent Helicobacter pylori: Normal; eradication reduces cancer risk (stomach) but may increase acid reflux (stomach).

Legionella pneumophila

Physiological Role: Legionella pneumophila is a gram-negative bacterium causing Legionnaires' disease, replicating in macrophages and altering intracellular chemistry; no beneficial role.

Organ Interactions:

- Lungs: Causes pneumonia, disrupting alveolar chemistry.
- Immune System: Evades phagocytosis, overwhelming cytokine responses.
- Kidneys: Leads to renal failure via systemic inflammation.
- Brain: Causes encephalopathy, altering neurotransmitter balance.
- Liver: Induces hepatitis, impairing detoxification.

Clinical Implications:

- High Legionella pneumophila (Severe to Mild):
- Severe: Legionnaires' disease, causing respiratory failure (lungs), renal failure (kidneys), and encephalopathy (brain).
 - Moderate: Pontiac fever, leading to fever and pneumonia (lungs, immune system).
 - Mild: Subclinical, causing low-grade respiratory symptoms (lungs).
- Low/Absent Legionella pneumophila: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Leptospira interrogans

Physiological Role: Leptospira interrogans is a spirochete causing leptospirosis, altering renal and hepatic chemistry; no beneficial role.

Organ Interactions:

Kidneys: Causes acute kidney injury, disrupting filtration.

- Liver: Induces jaundice, impairing bilirubin metabolism.
- Lungs: Leads to pulmonary hemorrhage, altering gas exchange.
- Brain: Causes meningitis, affecting cerebrospinal fluid.
- Immune System: Triggers cytokine storm.

- High Leptospira interrogans (Severe to Mild):
- Severe: Weil's disease, causing renal failure (kidneys), liver failure (liver), and pulmonary hemorrhage (lungs).
 - Moderate: Leptospirosis, leading to jaundice and fever (liver, immune system).
 - Mild: Anicteric form, causing mild fever and myalgia (immune system).
- Low/Absent Leptospira interrogans: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Listeria monocytogenes

Physiological Role: Listeria monocytogenes is a gram-positive bacterium causing listeriosis, surviving intracellularly and altering macrophage chemistry; no beneficial role.

Organ Interactions:

- Brain: Causes meningitis, affecting cerebrospinal fluid.
- Blood: Leads to bacteremia, altering coagulation.
- Placenta: Causes fetal infection, disrupting development.
- Intestines: Initial entry site, causing gastroenteritis.
- Immune System: Evades phagocytosis, overwhelming responses.

Clinical Implications:

- High Listeria monocytogenes (Severe to Mild):
- Severe: Meningitis or sepsis, causing neurological damage (brain), multiorgan failure (blood), and fetal loss (placenta).
- Moderate: Bacteremia, leading to fever and gastrointestinal symptoms (intestines, immune system).
 - Mild: Mild gastroenteritis (intestines).
- Low/Absent Listeria monocytogenes: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Lyme

Physiological Role: Lyme disease is caused by Borrelia burgdorferi (spirochete bacterium), altering immune chemistry via persistent antigens; no beneficial role.

Organ Interactions:

- Joints: Causes arthritis, disrupting synovial chemistry.
- Heart: Leads to carditis, affecting conduction.
- Nervous System: Induces neuroborreliosis, altering neurotransmitters.
- Immune System: Triggers chronic inflammation.
- Skin: Causes erythema migrans, affecting local inflammation.

Clinical Implications:

- High Lyme (Severe to Mild):
- Severe: Disseminated disease, causing neuroborreliosis (nervous system), carditis (heart), and arthritis (joints).
- Moderate: Early dissemination, leading to joint pain and fatigue (joints, immune system).
 - Mild: Localized rash and fever (skin).
- Low/Absent Lyme: Normal, as it is not part of the human microbiome and is cleared by immune responses or antibiotics.

MRSA

Physiological Role: MRSA (methicillin-resistant Staphylococcus aureus) is a grampositive bacterium causing skin and systemic infections, resisting antibiotics and altering immune chemistry; commensal in some.

Organ Interactions:

- Skin: Causes abscesses, altering local pH and inflammation.
- Blood: Leads to bacteremia, disrupting coagulation.
- Lungs: Causes pneumonia, impairing gas exchange.
- Heart: Induces endocarditis, affecting cardiac chemistry.
- Immune System: Evades antibiotics, overwhelming responses.

Clinical Implications:

High MRSA (Severe to Mild):

- Severe: Sepsis or endocarditis, causing multiorgan failure (heart, blood) and pneumonia (lungs).
- Moderate: Skin infection, leading to abscesses and inflammation (skin, immune system).
 - Mild: Asymptomatic carriage or mild skin irritation (skin).
- Low/Absent MRSA: Normal as low-level commensal; absence reduces infection risk (immune system).

Mycobacterium tuberculosis

Physiological Role: Mycobacterium tuberculosis is an acid-fast bacterium causing tuberculosis, surviving in macrophages and altering granuloma chemistry; no beneficial role.

Organ Interactions:

- Lungs: Causes granulomas, altering alveolar chemistry.
- Immune System: Induces chronic inflammation via cytokines.
- Lymph Nodes: Leads to lymphadenitis, affecting immune trafficking.
- Bones: Causes spinal TB, disrupting bone matrix.
- Brain: Induces meningitis, affecting cerebrospinal fluid.

Clinical Implications:

- High Mycobacterium tuberculosis (Severe to Mild):
- Severe: Miliary TB, causing multiorgan failure (lungs, brain) and granulomas (immune system).
- Moderate: Pulmonary TB, leading to cough and weight loss (lungs, immune system).
 - Mild: Latent infection, asymptomatic (immune system).
- Low/Absent Mycobacterium tuberculosis: Normal, as it is not part of the human microbiome and is cleared by immune responses or treatment.

Mycoplasma genus(1-5)

Physiological Role: Mycoplasma species are wall-less bacteria causing respiratory and urogenital infections, altering cell membrane chemistry; no beneficial role.

Organ Interactions:

Respiratory System: Causes pneumonia, disrupting epithelial chemistry.

- Genitourinary System: Leads to urethritis, affecting mucosal balance.
- Immune System: Evades immunity, triggering autoantibodies.
- Joints: Causes reactive arthritis, disrupting synovial chemistry.
- Brain: Rarely causes encephalitis.

- High Mycoplasma genus(1-5) (Severe to Mild):
- Severe: Atypical pneumonia, causing respiratory failure (respiratory system) and encephalitis (brain).
- Moderate: Urethritis or arthritis, leading to inflammation (genitourinary system, joints).
 - Mild: Subclinical, causing low-grade fever (immune system).
- Low/Absent Mycoplasma genus(1-5): Normal, as it is not part of the human microbiome and is cleared by immune responses.

Neisseria meningitidis

Physiological Role: Neisseria meningitidis is a gram-negative diplococcus causing meningitis, encapsulated strains evade immune chemistry; commensal in nasopharynx.

Organ Interactions:

- Brain: Causes meningitis, altering cerebrospinal fluid chemistry.
- Blood: Leads to septicemia, disrupting coagulation.
- Adrenals: Causes Waterhouse-Friderichsen syndrome.
- Joints: Causes septic arthritis, affecting synovial chemistry.
- Immune System: Capsule inhibits complement.

Clinical Implications:

- High Neisseria meningitidis (Severe to Mild):
- Severe: Meningococcemia, causing shock (adrenals), meningitis (brain), and purpura (skin).
 - Moderate: Meningitis, leading to fever and stiff neck (brain, immune system).
 - Mild: Asymptomatic carriage (immune system).
- Low/Absent Neisseria meningitidis: Normal as low-level commensal; absence reduces meningitis risk (brain).

Pseudomonas aeruginosa

Physiological Role: Pseudomonas aeruginosa is a gram-negative opportunist causing infections in immunocompromised, producing toxins altering cell signaling; no beneficial role.

Organ Interactions:

- Lungs: Causes pneumonia, disrupting mucus chemistry.
- Skin: Leads to ecthyma gangrenosum, affecting tissue pH.
- Urinary System: Causes UTIs, altering electrolyte balance.
- Blood: Bacteremia disrupts coagulation.
- Immune System: Biofilms evade phagocytosis.

Clinical Implications:

- High Pseudomonas aeruginosa (Severe to Mild):
- Severe: Sepsis, causing multiorgan failure (lungs, blood) and gangrene (skin).
- Moderate: Pneumonia or UTI, leading to inflammation (lungs, urinary system).
- Mild: Colonization, causing low-grade symptoms (immune system).
- Low/Absent Pseudomonas aeruginosa: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Rickettsia rickettsii

Physiological Role: Rickettsia rickettsii is an obligate intracellular bacterium causing Rocky Mountain spotted fever, damaging endothelium; no beneficial role.

Organ Interactions:

- Blood Vessels: Causes vasculitis, altering permeability.
- Skin: Leads to rash, affecting local inflammation.
- Brain: Causes encephalitis, disrupting neurotransmitters.
- Lungs: Induces pneumonia, impairing gas exchange.
- Heart: Causes myocarditis, affecting cardiac chemistry.

Clinical Implications:

- High Rickettsia rickettsii (Severe to Mild):
- Severe: Vasculitis, causing multiorgan failure (blood vessels, brain) and rash (skin).
 - Moderate: Fever and rash, leading to vascular leakage (blood vessels).

- Mild: Early symptoms like headache (brain).
- Low/Absent Rickettsia rickettsii: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Salmonella

Physiological Role: Salmonella species are gram-negative bacteria causing salmonellosis, invading gut epithelium and altering inflammatory chemistry; no beneficial role.

Organ Interactions:

- Intestines: Causes enterocolitis, disrupting fluid balance.
- Immune System: Triggers cytokine storm.
- Blood: Bacteremia alters coagulation.
- Liver: Causes hepatitis, impairing detoxification.
- Bones: Causes osteomyelitis in sickle cell patients.

Clinical Implications:

- High Salmonella (Severe to Mild):
- Severe: Typhoid fever, causing multiorgan failure (liver, blood) and intestinal perforation (intestines).
 - Moderate: Gastroenteritis, leading to diarrhea and dehydration (intestines).
 - Mild: Mild abdominal pain (intestines).
- Low/Absent Salmonella: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Shigella sonnei

Physiological Role: Shigella sonnei is a gram-negative bacterium causing shigellosis, producing toxins that disrupt gut epithelial chemistry; no beneficial role.

Organ Interactions:

- Intestines: Invades mucosa, causing dysentery and inflammation.
- Immune System: Triggers intense cytokine response.
- Kidneys: Dehydration from diarrhea affects electrolyte balance.
- Joints: Causes reactive arthritis via molecular mimicry.
- Brain: Rarely causes encephalopathy.

- High Shigella sonnei (Severe to Mild):
- Severe: Toxic megacolon, causing intestinal perforation (intestines), dehydration (kidneys), and sepsis (immune system).
 - Moderate: Dysentery, leading to bloody diarrhea and fever (intestines).
- Mild: Mild abdominal cramps (intestines).
- Low/Absent Shigella sonnei: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Staphylococcus aureus

Physiological Role: Staphylococcus aureus is a gram-positive bacterium, commensal on skin/gut but pathogenic, producing toxins altering immune chemistry.

Organ Interactions:

- Skin: Causes abscesses, disrupting local pH.
- Blood: Leads to bacteremia, altering coagulation.
- Lungs: Causes pneumonia, impairing gas exchange.
- Heart: Induces endocarditis, affecting cardiac chemistry.
- Intestines: Toxins cause food poisoning.

Clinical Implications:

- High Staphylococcus aureus (Severe to Mild):
- Severe: Sepsis or toxic shock, causing multiorgan failure (heart, lungs) and rash (skin).
- Moderate: Skin infection or pneumonia, leading to abscesses (skin) and inflammation (lungs).
 - Mild: Asymptomatic carriage or mild food poisoning (intestines).
- Low/Absent Staphylococcus aureus: Normal as low-level commensal; absence reduces infection risk (immune system).

Streptococcus Group A

Physiological Role: Group A Streptococcus (Streptococcus pyogenes) is a grampositive bacterium causing pharyngitis and invasive infections, producing toxins altering immune chemistry.

Organ Interactions:

- Throat: Causes pharyngitis, disrupting mucosal chemistry.
- Skin: Leads to necrotizing fasciitis, affecting tissue pH.
- Heart: Causes rheumatic fever, altering cardiac chemistry.
- Kidneys: Induces glomerulonephritis, disrupting filtration.
- Immune System: Triggers autoimmune responses.

- High Streptococcus Group A (Severe to Mild):
- Severe: Necrotizing fasciitis, causing tissue death (skin), rheumatic fever (heart), and renal failure (kidneys).
- Moderate: Strep throat, leading to fever and inflammation (throat, immune system).
 - Mild: Asymptomatic carriage (immune system).
- Low/Absent Streptococcus Group A: Normal, as it is not part of the human microbiome and is cleared by immune responses.

Streptococcus Group B

Physiological Role: Group B Streptococcus (Streptococcus agalactiae) is a gram-positive bacterium causing neonatal infections, altering immune chemistry; commensal in vagina/gut.

Organ Interactions:

- Brain: Causes meningitis in neonates, affecting cerebrospinal fluid.
- Lungs: Leads to pneumonia, impairing gas exchange.
- Blood: Bacteremia disrupts coagulation.
- Joints: Causes septic arthritis, affecting synovial chemistry.
- Immune System: Capsule evades phagocytosis.

Clinical Implications:

- High Streptococcus Group B (Severe to Mild):
- Severe: Neonatal sepsis, causing meningitis (brain), pneumonia (lungs), and multiorgan failure (blood).
 - Moderate: Maternal colonization, leading to preterm labor (reproductive system).
 - Mild: Asymptomatic carriage (immune system).
- Low/Absent Streptococcus Group B: Normal as low-level commensal; absence reduces neonatal infection risk (immune system).

Ureaplasma genus(1-2)

Physiological Role: Ureaplasma species are wall-less bacteria causing urogenital infections, altering mucosal chemistry; commensal in low amounts.

Organ Interactions:

- Genitourinary System: Causes urethritis, disrupting electrolyte balance.
- Placenta: Leads to chorioamnionitis, affecting fetal development.
- Respiratory System: Causes pneumonia in neonates.
- Immune System: Evades detection, triggering inflammation.
- Joints: Rarely causes reactive arthritis.

Clinical Implications:

- High Ureaplasma genus(1-2) (Severe to Mild):
- Severe: Chorioamnionitis, causing preterm birth (placenta) and neonatal pneumonia (respiratory system).
- Moderate: Urethritis, leading to inflammation and discharge (genitourinary system).
 - Mild: Asymptomatic overgrowth, causing subtle inflammation (immune system).
- Low/Absent Ureaplasma genus(1-2): Normal as low-level commensal; absence may indicate dysbiosis but is harmless.

GROK Disclaimer: Grok is not a doctor; please consult one.